
Onix AutoACL:
An AI-powered approach
to adaptive security in Chrome
Enterprise Premium

Page 02

Table of Contents
Abstract

Introduction

 Business value and justification

 Enhanced security

 Increased efficiency

 Enhanced business agility

 Cost optimization

AutoACL architecture

 Core components

 Data flow

Implementation details

 Data preprocessing and training

 Integration with Google services

 Open-source tool integration

Security considerations

Future directions

Conclusion

Technical addendum: Implementing AutoACL in
Chrome Enterprise Premium

03

04

04

04

04

05

05

06

06

06

07

07

07

07

08

08

08

09

Page 03

Abstract
This white paper provides an overview of the capabilities, technical design, and implementation of AutoACL,
an innovative solution initially developed by Google, but enhanced by Onix to help organizations improve
security for their Chrome Enterprise Premium (CEP) deployments. AutoACL uses Google's PaLM2 large
language model to improve access control management within CEP.

This document explores the underlying technologies, integration with Google Cloud and Chrome services,
and utilization of open-source tools to provide guidance to organizations seeking to enhance their security
posture through AI-driven access control in CEP.

Page 04

Introduction
Traditional access control mechanisms, particularly Access Control Lists (ACLs) using role-based access
controls (RBAC) or static permissions present complexity, management, scalability, and overhead challenges
for organizations. Manually configuring and maintaining ACLs for a large number of users, devices, and
resources for resource targets whose access needs to be adjusted based on business conditions and/or
market and organizational changes can be error prone and time-consuming. This increases business,
technical, and operational risk and frustrates end-users and non-employees such as contractors.

AutoACL addresses these challenges directly by enabling the definition and modification of security policies
using natural language, simplifying access control management and promoting least privilege principles
which allow the organization to scale without having to worry about legacy access challenges.

Business value and justification

Deploying and using AutoACL for CEP can offer significant upside to medium and large organizations. By
streamlining and automating access control management, AutoACL delivers benefits that positively impact
security posture, operational efficiency, and overall business agility. Simplifying security is a win for any
organization.

Organizations that use AutoACL may see the benefits outlined in this document (note: it assumes the
organization has built and uses buttoned-down role-based access controls to support their operations).

Enhanced security

• Reduced human error: AutoACL minimizes the risk of human error associated with manual ACL
configuration, leading to more accurate and reliable access control, with faster response times for
end-user customers.

• Least privilege enforcement: AutoACL simplifies the implementation of least privilege principles, ensuring
that users have only the necessary access permissions to perform their job functions.

• Improved compliance: AutoACL helps organizations meet regulatory compliance requirements by
providing a clear and auditable access control framework. Framework goes into the tool and the ACL
output will reference this information to ensure compliant access is provided.

Increased efficiency

• Reduced administrative overhead: AutoACL automates ACL management tasks, freeing up IT staff to focus
on strategic initiatives and top business priorities.

• Improved productivity: Streamlined, lean processes will enhance employee and contractor productivity by
minimizing access-related delays and frustrations. Onboard and offboard faster and handle
organizational changes quickly.

Page 05

Enhanced business agility

• Scalability: AutoACL's architecture is designed to scale with organizational growth, accommodating
increasing numbers of users, devices, and resources.

• Adaptability: AI-driven access control enables dynamic adaptation to evolving business requirements and
threat landscapes.

• Innovation: By reducing the complexity of access control management, AutoACL empowers organizations
to focus on innovation and digital transformation initiatives.

Cost optimization

• Reduced operational costs: Automation and efficiency gains lead to lower operational costs associated
with access control management.

• Reduced security incident costs: Enhanced security posture can lower the risk and costs of security
breaches and data leaks.

Page 06

AutoACL architecture
AutoACL relies on Google Cloud products and services as well as open-source tools to provide a flexible,
robust, and scalable access control solution within Chrome Enterprise Premium.

Core components

• User Interface: A web interface where administrators define policies in natural language.

• Backend Service: Handles policy processing, interacts with PaLM2 (via Vertex AI), and generates ACLs.

• PaLM2: Google's language model interprets natural language and generates ACLs.

• Cloud Storage: Stores training data, model checkpoints, and generated ACLs.

• Cloud Run: Serverless environment for deploying and scaling the backend service.

• OPA: Open-source policy engine for fine-grained access control enforcement.

• Chrome Enterprise Premium: Integrates for policy deployment and enforcement on Chrome devices.

• Access Context Manager: Provides contextual information (location, device state) for access decisions.

• Monitoring and Logging: Tracks performance and activity for operational insight.

Data flow

The administrator
defines policies

in the UI

Backend sends
policies to PaLM2

for processing

ACLs are stored
and enforced via

OPA

Access Context
Manager adds

context to access
decisions

PaLM2 generates
ACLs

Policies are deployed
to Chrome Enterprise

Premium

System
performance

and activity are
monitored

Page 07

Implementation details
Data preprocessing and training

• Dataset creation: A comprehensive dataset of access control policies and corresponding ACL entries is
curated from various sources, including existing security policies, best practices, and real-world
scenarios.

• Data preprocessing: The dataset is preprocessed to clean, normalize, and format the data for optimal
training of the PaLM2 model.

• Model training: PaLM2 is fine-tuned on the preprocessed dataset using Google's advanced machine
learning infrastructure. This fine-tuning process enables the model to effectively understand and generate
ACLs from natural language instructions.

Integration with Google services

• Google Cloud Storage: Google Cloud Storage is used to store the training data, model checkpoints, and
generated ACLs. This ensures data durability, scalability, and secure access control.

• Cloud Run: Cloud Run is employed to deploy and manage the AutoACL application, providing a serverless
platform for handling access control requests with automatic scaling and cost optimization.

• Cloud Logging and Monitoring: Cloud Logging and Monitoring services are integrated to track AutoACL's
performance, identify potential issues, and ensure operational efficiency.

Open-source tool integration

• Open Policy Agent (OPA): This open-source tool provides a general-purpose policy engine used for policy
evaluation and enforcement. This allows for flexible and granular control over access permissions.

Page 08

Security considerations
AutoACL incorporates several security measures to mitigate potential risks associated with AI-powered
access control:

Prompt engineering: Careful prompt engineering techniques are employed to guide the PaLM2 model towards
generating secure and compliant ACLs.

Input sanitization: All user inputs are sanitized to prevent malicious code injection and other security threats.

Model explainability: Techniques for model explainability are employed to understand the reasoning behind
the generated ACLs, ensuring transparency and accountability.

Auditing and logging: Comprehensive auditing and logging mechanisms are implemented to track all access
control activities and facilitate security investigations.

Future directions
AutoACL is an evolving solution with ongoing development and enhancements. Future directions include:

Enhanced natural language understanding: Improving the model's ability to understand complex and nuanced
natural language instructions for access control.

Contextual awareness: Incorporating contextual information, such as user location, device posture, and time
of day, into access control decisions.

Automated policy optimization: Developing AI-driven techniques to automatically optimize access control
policies based on usage patterns and security best practices.

Integration with threat intelligence: Integrating threat intelligence feeds to proactively adapt access control
policies based on emerging threats.

Conclusion
AutoACL is a giant leap forward in access control management using AI. It helps simplify policy definition,
reduce errors, and improve security within Chrome Enterprise Premium. By combining Google's cutting-edge
technologies with open-source tools, AutoACL provides a robust and scalable solution for organizations
seeking to implement adaptive and efficient access control, reduce the support burden, and enable their
end-users.

Even as a tool to audit or check the validity of access settings based on what an analyst or administrator
observes in the environment, AutoACL can provide assurance that the proper access controls are in place very
quickly. AutoACL could act as a second line of defense and also be used by auditors to identify weaknesses
and control issues for access management reducing the amount of work required.

As AI continues to advance, enhancements to AutoACL will play a crucial role in enabling organizations to
achieve a secure and productive digital workplace while minimizing security headaches for their support
teams and end-users.

Page 09

Technical addendum:
Implementing AutoACL in
Chrome Enterprise Premium
This addendum provides a step-by-step guide for CEP administrators to implement AutoACL in their
organization.

Step 1: Accessing PaLM2

• Vertex AI: PaLM2 can be accessed through Vertex AI, Google Cloud's machine learning platform

◦ Sign up for a Google Cloud account and create a project. Link to Google Cloud signup

◦ Enable the Vertex AI API in your project. Link to Vertex AI documentation

◦ Explore PaLM 2 models available within Vertex AI. Link to PaLM 2 models

Step 2: Building the AutoACL interface

• Frontend development: Develop a user-friendly web interface for security administrators to input natural
language access control policies

◦ Utilize a frontend framework like React or Angular to build the interface

◦ Design input fields for specifying subjects, objects, and actions in natural language

◦ Include validation to ensure complete and accurate policy definitions

• Backend development: Develop a backend service to handle policy processing and ACL generation

◦ Use a backend framework like Node.js or Python (Flask/Django)

◦ Implement API calls to interact with the PaLM2 model through Vertex AI

◦ Integrate with Google Cloud Storage to store policies and generated ACLs

Step 3: Configuring open-source tools

• Open Policy Agent (OPA):

◦ Download and install OPA. Link to OPA documentation

◦ Define policy rules in Rego, OPA's policy language, to enforce access control based on the
generated ACLs

◦ Integrate OPA with your application to evaluate access requests against the policies

• OWASP ZAP:

◦ Download and install OWASP ZAP. Link to OWASP ZAP website

◦ Configure ZAP to perform automated security scans on the AutoACL application and
generated ACLs

◦ Analyze scan results to identify and address potential vulnerabilities

https://cloud.google.com/
https://cloud.google.com/vertex-ai/docs
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://www.openpolicyagent.org/docs/latest/
https://www.hackerone.com/knowledge-center/owasp-zap-6-key-capabilities-and-quick-tutorial

Page 10

• SonarQube:

◦ Download and install SonarQube. Link to SonarQube website

◦ Configure SonarQube to analyze the AutoACL codebase for code quality and security issues

◦ Integrate SonarQube with your development pipeline for continuous code quality assessment

Step 4: Deploying on Cloud Run

• Containerize the application: Package the AutoACL application and its dependencies into a Docker
container

• Deploy to Cloud Run: Deploy the container to Cloud Run. Link to Cloud Run documentation

• Configure service: Set up environment variables, scaling options, and security settings for the Cloud Run
service

Step 5: Integrating with Chrome Enterprise Premium

• API integration: Utilize the Chrome Enterprise Premium API to programmatically manage user access and
device policies. Link to Chrome Enterprise Premium API documentation

• Policy enforcement: Enforce the generated ACLs by configuring user and device policies within Chrome
Enterprise Premium

• Access Context Manager: Leverage Access Context Manager to define contextual conditions for access
control, such as user location, device posture, and time of day. Link to Access Context Manager
documentation

Step 6: Monitoring and maintenance

• Cloud logging: Monitor AutoACL logs for errors, performance issues, and security events

• Cloud monitoring: Set up monitoring dashboards to track key metrics, such as request latency, error rates,
and resource utilization

• Regular updates: Regularly update the PaLM2 model and AutoACL application to benefit from the latest
improvements and security patches. Example Code Snippets:

https://www.sonarqube.org/
https://cloud.google.com/run/docs
https://cloud.google.com/access-context-manager/docs

Page 11

Interacting with PaLM2 through Vertex AI (Python):

Python

Usent

from google.cloud import aiplatform
•
•
• aiplatform.init(project="your-project-id", location="us-central1")
•
• model = aiplatform.Model("text-bison@001")
•
• prompt = "Allow engineers in the development team to access the code repository."
•
• response = model.predict(prompt=prompt)
•
• print(response.predictions[0].text)

Use code with caution.

Defining OPA Policy (Rego):

Code snippet

Use code with caution.

Usent

• package example
•
•
• allow {
• input.user.role == "engineer"
• input.user.team == "development"
• input.resource == "code repository"
• }

Page 12

Enforcing Policy with Chrome Enterprise Premium API (Python):

Python

Usent

• from googleapiclient.discovery import build
•
• service = build('chromemanagement', 'v1')
•
• policy = {
• 'policySchema': 'chrome.users.policies',
• 'policyValue': {
• 'URLBlacklist': ['*.example.com']
• }
• }
•
• request = service.customers().policies().orgunits().create(
• customer='my_customer',
• orgUnitId='my_org_unit',
• body=policy
•)
•
• response = request.execute()
•
• print(response)

Use code with caution.

Note: These code snippets are for illustrative purposes and may require modifications based on your specific
implementation.

This detailed guide, combined with the comprehensive information in the white paper, empowers CEP
administrators to effectively implement and manage AutoACL, enhancing their organization's security posture
with AI-driven access control.

Get in touch
onixnet.com

connect@onixnet.com

https://www.onixnet.com/
mailto:connect@onixnet.com

